Efficient Binary Linear Programming Formulations for Boolean Functions
نویسندگان
چکیده
منابع مشابه
A construction of binary linear codes from Boolean functions
Boolean functions have important applications in cryptography and coding theory. Two famous classes of binary codes derived from Boolean functions are the Reed-Muller codes and Kerdock codes. In the past two decades, a lot of progress on the study of applications of Boolean functions in coding theory has been made. Two generic constructions of binary linear codes with Boolean functions have bee...
متن کاملBinary decision diagrams for random Boolean functions
Binary Decision Diagrams (BDDs) are a data structure for Boolean functions which are also known as branching programs. In ordered binary decision diagrams (OBDDs), the tests have to obey a fixed variable ordering. In free binary decision diagrams (FBDDs), each variable can be tested at most once. The efficiency of new variants of the BDD concept is usually demonstrated with spectacular (worst-c...
متن کاملSOLVING FUZZY LINEAR PROGRAMMING PROBLEMS WITH LINEAR MEMBERSHIP FUNCTIONS-REVISITED
Recently, Gasimov and Yenilmez proposed an approach for solving two kinds of fuzzy linear programming (FLP) problems. Through the approach, each FLP problem is first defuzzified into an equivalent crisp problem which is non-linear and even non-convex. Then, the crisp problem is solved by the use of the modified subgradient method. In this paper we will have another look at the earlier defuzzifi...
متن کاملBinary Cut-and- Branch Method for Solving Linear Programming Problems with Boolean Variables
A numerical method is proposed for solving linear programming problems with Boolean variables. The method is based on an iterative application of a cutting-plane procedure that takes into account, as fully as possible, the properties of the problems being solved. Heuristic procedures are applied for the synthesis of cutting-planes as an intermediate step substantiating the construction of a sol...
متن کاملLinear symmetries of Boolean functions
In this note we study the linear symmetry group LS(f ) of a Boolean function f of n variables, that is, the set of all ∈ GLn(2) which leave f invariant, where GLn(2) is the general linear group on the field of two elements. The main problem is that of concrete representation: which subgroups G of GLn(2) can be represented as G= LS(f ) for some n-ary k-valued Boolean function f. We call such sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics, Optimization & Information Computing
سال: 2014
ISSN: 2310-5070,2311-004X
DOI: 10.19139/83